

株式会社マイオリッジ

ヒト iPS 細胞用・未分化維持培地 「Ex-iPS Cell Medium」の発売について

株式会社マイオリッジ(本社:京都市左京区、代表取締役社長:牧田 直大)は、本日ヒト人工多能性幹細胞(ヒト iPS 細胞)用培地「Ex-iPS Cell Medium(以下、本製品)」を発売しましたのでお知らせします。

近年、iPS 細胞などの幹細胞を用いた研究は、再生医療や創薬、基礎研究などで多く使用されており、実用化に向けた動きが進んでいます。但し、iPS 細胞の培養においては、培地の性能(未分化性維持や高い増殖性など)や、研究者への培地交換の負担、細胞培養におけるコスト増加など課題は多くあります。

本製品は、これら iPS 細胞の培養課題に対して、培地性能の向上や培地交換の負担軽減を実現し、更に iPS 細胞株に依存しますが、コスト増加要因である接着因子のコーティング工程を不要としても、安定的な iPS 細胞の増殖能を示す無血清・Xeno-free (異種動物成分不含) 培地です。

本製品は、iPS 細胞の培養課題を解決し、再生医療研究の加速化に貢献するものと考えます。

【製品写真】

【製品の概要】

製品コード	製品名	製品名 容量		保存
ME-09J00152	Ex-iPS Cell Medium	本体:500mL	35,000 円	-20°C
		サプリメント:20mL	33,000 1	

*本製品は低濃度のiMatrix-511 silk (組換えラミニン)を含有しており、iPS 細胞株によっては、そのままコーティング無しでもご使用いただきます。接着状態が悪い場合は、適量のiMatrix-511 silk を追添加して頂くか、ラミニン、ビトロネクチン等でコーティングされた培養容器をご使用ください。

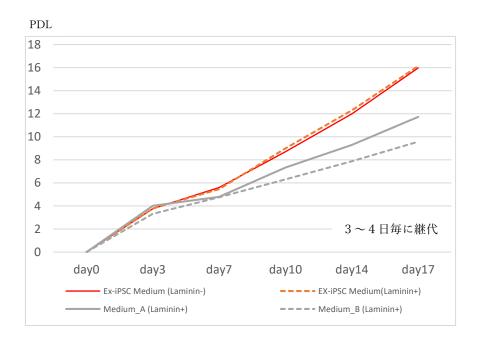
*本製品は、研究用試薬です。また本体価格のみで、消費税は含まれません。

【特長】

- ✓ 無血清・Xeno-free 培地
- ✓ 高い増殖性と接着性
- ✓ 未分化性を維持
- ✓ 接着因子のコーティング不要
- ✓ 培地交換の負担軽減

|顕微鏡写真|

【播種 3 日後 iPS 細胞株 253G1】


 Ex-iPS Cell Medium
 Medium_A
 Medium_B

 (接着因子コーティング無)
 (接着因子コーティング有)
 (接着因子コーティング有)

*当アプリケーションデータの接着因子には、ラミニンを用いております。接着因子のコーティングの要否は iPS 細胞株に依存します。

| 増殖性 |

Ex-iPS Cell Medium は、他社 iPSC 用培地と比較して、安定した高い増殖能を示します。 更に、Ex-iPS Cell Medium は、接着因子コーティング無しの条件下でも、他社培地と比較 して高い増殖能が認められます。

|分化誘導 心筋分化 |

253G1 株を用いて心筋への分化誘導後に、cTnT 及び α Actinin を FACS で解析しました。

Ex-iPS Cell Medium で培養したヒト iPS 細胞株は、Laminin の有無に関わらず他社 iPSC 用培地と比較して、高い陽性率が示されます。

Medium	Laminin	cTnT	α Actinin	
Ex-iPSC Medium	(-)	75.3%	93.6%	
Ex-iPSC Medium	(+)	68.0%	79.1%	
Medium_B	(+)	61.7%	72.0%	

|多能性|

Ex-iPS Cell Medium で培養したヒト iPS 細胞は、未分化マーカー遺伝子発現が低下し、 内胚葉、中胚葉、外胚葉の各分化マーカー遺伝子発現量が増加する傾向がみられます。

|核型解析|

Ex-iPS Cell Medium で培養したヒト iPS 細胞は、10 継代後でも染色体に変化がみられないことを確認しております。

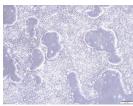
|未分化性|

Ex-iPS Cell Medium で培養したヒト iPS 細胞は、他社 iPSC 用培地で培養した場合と比較して Oct3/4 及び TRA-1 の高い発現が認められ、未分化性維持が確認されます。

Medium	Laminin	Oct3/4	TRA-1
Ex-iPSC Medium	(-)	97.3%	98.8%
Ex-iPSC Medium	(+)	92.9%	95.9%
Medium_A	(+)	90.0%	93.7%
Medium_B	(+)	88.9%	72.5%

| 培地交換の負担軽減 |

Ex-iPS Cell Medium は、他社 iPSC 用培地と比較し、培地交換を頻繁に実施しなくても、 高い増殖能と未分化維持が可能です。


(*)day3(3 日に 1 回)又は day2(2 日に 1 回)の頻度で、培地交換又は継代を実施し、17 日目の未分化マーカーの発現を評価しました。

Medium	培地交換頻度*	Oct3/4	TRA-1	
Ex-iPS Cell Medium	day3	92.2%	98.2%	
Medium_A	day3	76.1%	71.8%	
Ex-iPS Cell Medium	day2	97.3%	98.8%	
Medium_A	day2	90.0%	93.7%	

【播種 3 日後 iPS 細胞株 253G1】

Ex-iPS Cell Medium は、他社培地と比較して day3 の培地交換でも、高い増殖能を示します。

Ex-iPS Cell Medium

Medium_A

培養スケジュール例

	月	火	水	木	金	土	日
例 1 *1	0	P			Р		
例 2 *1	P			0	Р		
例 3 *2	0		0		Р		

P:継代、○:培地交換

*1) 253G1 株、HT4G7 株(信州大学・カニクイザル由来 iPS 細胞株)でフィーダーフリー培養による増殖を確認しています。

*2) 増殖が遅い株の場合

【お問い合わせ】

本製品に関する内容については、下記当社連絡先までお問い合わせ下さい。

-Tel : 075-585-4560

-Email: sales@myoridge.co.jp